Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Microbiol Spectr ; 11(6): e0274423, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37971258

ABSTRACT

IMPORTANCE: While increasing rates of antimicrobial resistance undermine our current arsenal of antibiotics, resistance-modifying agents (RMAs) hold promise to extend the lifetime of these important molecules. We here provide a standardized nomenclature for RMAs within the Comprehensive Antibiotic Resistance Database in aid of RMA discovery, data curation, and genome mining.


Subject(s)
Anti-Bacterial Agents , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial/genetics
2.
Nucleic Acids Res ; 51(D1): D690-D699, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36263822

ABSTRACT

The Comprehensive Antibiotic Resistance Database (CARD; card.mcmaster.ca) combines the Antibiotic Resistance Ontology (ARO) with curated AMR gene (ARG) sequences and resistance-conferring mutations to provide an informatics framework for annotation and interpretation of resistomes. As of version 3.2.4, CARD encompasses 6627 ontology terms, 5010 reference sequences, 1933 mutations, 3004 publications, and 5057 AMR detection models that can be used by the accompanying Resistance Gene Identifier (RGI) software to annotate genomic or metagenomic sequences. Focused curation enhancements since 2020 include expanded ß-lactamase curation, incorporation of likelihood-based AMR mutations for Mycobacterium tuberculosis, addition of disinfectants and antiseptics plus their associated ARGs, and systematic curation of resistance-modifying agents. This expanded curation includes 180 new AMR gene families, 15 new drug classes, 1 new resistance mechanism, and two new ontological relationships: evolutionary_variant_of and is_small_molecule_inhibitor. In silico prediction of resistomes and prevalence statistics of ARGs has been expanded to 377 pathogens, 21,079 chromosomes, 2,662 genomic islands, 41,828 plasmids and 155,606 whole-genome shotgun assemblies, resulting in collation of 322,710 unique ARG allele sequences. New features include the CARD:Live collection of community submitted isolate resistome data and the introduction of standardized 15 character CARD Short Names for ARGs to support machine learning efforts.


Subject(s)
Data Curation , Databases, Factual , Drug Resistance, Microbial , Machine Learning , Anti-Bacterial Agents/pharmacology , Genes, Bacterial , Likelihood Functions , Software , Molecular Sequence Annotation
3.
ACS Infect Dis ; 8(10): 2187-2197, 2022 10 14.
Article in English | MEDLINE | ID: mdl-36098580

ABSTRACT

Gram-negative bacteria are intrinsically resistant to a plethora of antibiotics that effectively inhibit the growth of Gram-positive bacteria. The intrinsic resistance of Gram-negative bacteria to classes of antibiotics, including rifamycins, aminocoumarins, macrolides, glycopeptides, and oxazolidinones, has largely been attributed to their lack of accumulation within cells due to poor permeability across the outer membrane, susceptibility to efflux pumps, or a combination of these factors. Due to the difficulty in discovering antibiotics that can bypass these barriers, finding targets and compounds that increase the activity of these ineffective antibiotics against Gram-negative bacteria has the potential to expand the antibiotic spectrum. In this study, we investigated the genetic determinants for resistance to rifampicin, novobiocin, erythromycin, vancomycin, and linezolid to determine potential targets of antibiotic-potentiating compounds. We subsequently performed a high-throughput screen of ∼50,000 diverse, synthetic compounds to uncover molecules that potentiate the activity of at least one of the five Gram-positive-targeting antibiotics. This led to the discovery of two membrane active compounds capable of potentiating linezolid and an inhibitor of lipid A biosynthesis capable of potentiating rifampicin and vancomycin. Furthermore, we characterized the ability of known inhibitors of lipid A biosynthesis to potentiate the activity of rifampicin against Gram-negative pathogens.


Subject(s)
Anti-Bacterial Agents , Oxazolidinones , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Erythromycin/pharmacology , Gram-Negative Bacteria/genetics , Linezolid , Lipid A , Novobiocin/pharmacology , Oxazolidinones/pharmacology , Rifampin/pharmacology , Vancomycin/pharmacology
4.
ACS Infect Dis ; 8(4): 768-777, 2022 04 08.
Article in English | MEDLINE | ID: mdl-35319198

ABSTRACT

The difficulty in treating Gram-negative bacteria can largely be attributed to their highly impermeable outer membrane (OM), which serves as a barrier to many otherwise active antibiotics. This can be overcome with the use of perturbant molecules, which disrupt OM integrity and sensitize Gram-negative bacteria to many clinically available Gram-positive-active antibiotics. Although many new perturbants have been identified in recent years, most of these molecules are impeded by toxicity due to the similarities between pathogen and host cell membranes. For example, our group recently reported the cryptic OM-perturbing activity of the antiprotozoal drug pentamidine. Its development as an antibiotic adjuvant is limited, however, by toxicity concerns. Herein, we took a medicinal chemistry approach to develop novel analogs of pentamidine, aiming to improve its OM activity while reducing its off-target toxicity. We identified the compound P35, which induces OM disruption and potentiates Gram-positive-active antibiotics in Acinetobacter baumannii and Klebsiella pneumoniae. Relative to pentamidine, P35 has reduced mammalian cell cytotoxicity and hERG trafficking inhibition. Additionally, P35 outperforms pentamidine in a murine model of A. baumannii bacteremia. Together, this preclinical analysis supports P35 as a promising lead for further development as an OM perturbant.


Subject(s)
Acinetobacter baumannii , Anti-Bacterial Agents , Acinetobacter baumannii/metabolism , Animals , Anti-Bacterial Agents/chemistry , Gram-Negative Bacteria/metabolism , Klebsiella pneumoniae/metabolism , Mammals/metabolism , Mice , Pentamidine/metabolism , Pentamidine/pharmacology
5.
J Med Chem ; 64(18): 13540-13550, 2021 09 23.
Article in English | MEDLINE | ID: mdl-34473495

ABSTRACT

The polyprenyl lipid undecaprenyl phosphate (C55P) is the universal carrier lipid for the biosynthesis of bacterial cell wall polymers. C55P is synthesized in its pyrophosphate form by undecaprenyl pyrophosphate synthase (UppS), an essential cis-prenyltransferase that is an attractive target for antibiotic development. We previously identified a compound (MAC-0547630) that showed promise as a novel class of inhibitor and an ability to potentiate ß-lactam antibiotics. Here, we provide a structural model for MAC-0547630's inhibition of UppS and a structural rationale for its enhanced effect on UppS from Bacillus subtilis versus Staphylococcus aureus. We also describe the synthesis of a MAC-0547630 derivative (JPD447), show that it too can potentiate ß-lactam antibiotics, and provide a structural rationale for its improved potentiation. Finally, we present an improved structural model of clomiphene's inhibition of UppS. Taken together, our data provide a foundation for structure-guided drug design of more potent UppS inhibitors in the future.


Subject(s)
Alkyl and Aryl Transferases/metabolism , Bacterial Proteins/metabolism , Enzyme Inhibitors/metabolism , Alkyl and Aryl Transferases/chemistry , Bacillus subtilis/enzymology , Bacterial Proteins/chemistry , Catalytic Domain , Crystallography, X-Ray , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Methicillin-Resistant Staphylococcus aureus/enzymology , Microbial Sensitivity Tests , Molecular Structure , Protein Binding , Structure-Activity Relationship
6.
Front Mol Biosci ; 8: 691569, 2021.
Article in English | MEDLINE | ID: mdl-34150853

ABSTRACT

Staphylococcus aureus is a leading cause of bacterial infections world-wide. Staphylococcal infections are preferentially treated with ß-lactam antibiotics, however, methicillin-resistant S. aureus (MRSA) strains have acquired resistance to this superior class of antibiotics. We have developed a growth-based, high-throughput screening approach that directly identifies cell wall synthesis inhibitors capable of reversing ß-lactam resistance in MRSA. The screen is based on the finding that S. aureus mutants lacking the ClpX chaperone grow very poorly at 30°C unless specific steps in teichoic acid synthesis or penicillin binding protein (PBP) activity are inhibited. This property allowed us to exploit the S. aureus clpX mutant as a unique screening tool to rapidly identify biologically active compounds that target cell wall synthesis. We tested a library of ∼50,000 small chemical compounds and searched for compounds that inhibited growth of the wild type while stimulating growth of the clpX mutant. Fifty-eight compounds met these screening criteria, and preliminary tests of 10 compounds identified seven compounds that reverse ß-lactam resistance of MRSA as expected for inhibitors of teichoic acid synthesis. The hit compounds are therefore promising candidates for further development as novel combination agents to restore ß-lactam efficacy against MRSA.

7.
Acc Chem Res ; 54(8): 1909-1920, 2021 04 20.
Article in English | MEDLINE | ID: mdl-33787225

ABSTRACT

Drug-resistant bacterial infections pose an imminent and growing threat to public health. The discovery and development of new antibiotics of novel chemical class and mode of action that are unsusceptible to existing resistance mechanisms is imperative for tackling this threat. Modern industrial drug discovery, however, has failed to provide new drugs of this description, as it is dependent largely on a reductionist genes-to-drugs research paradigm. We posit that the lack of success in new antibiotic drug discovery is due in part to a lack of understanding of the bacterial cell system as whole. A fundamental understanding of the architecture and function of bacterial systems has been elusive but is of critical importance to design strategies to tackle drug-resistant bacterial pathogens.Increasingly, systems-level approaches are rewriting our understanding of the cell, defining a dense network of redundant and interacting components that resist perturbations of all kinds, including by antibiotics. Understanding the network properties of bacterial cells requires integrative, systematic, and genome-scale approaches. These methods strive to understand how the phenotypic behavior of bacteria emerges from the many interactions of individual molecular components that constitute the system. With the ability to examine genomic, transcriptomic, proteomic, and metabolomic consequences of, for example, genetic or chemical perturbations, researchers are increasingly moving away from one-gene-at-a-time studies to consider the system-wide response of the cell. Such measurements are demonstrating promise as quantitative tools, powerful discovery engines, and robust hypothesis generators with great value to antibiotic drug discovery.In this Account, we describe our thinking and findings using systems-level studies aimed at understanding bacterial physiology broadly and in uncovering new antibacterial chemical matter of novel mechanism. We share our systems-level toolkit and detail recent technological developments that have enabled unprecedented acquisition of genome-wide interaction data. We focus on three types of interactions: gene-gene, chemical-gene, and chemical-chemical. We provide examples of their use in understanding cell networks and how these insights might be harnessed for new antibiotic discovery. By example, we show the application of these principles in mapping genetic networks that underpin phenotypes of interest, characterizing genes of unknown function, validating small-molecule screening platforms, uncovering novel chemical probes and antibacterial leads, and delineating the mode of action of antibacterial chemicals. We also discuss the importance of computation to these approaches and its probable dominance as a tool for systems approaches in the future. In all, we advocate for the use of systems-based approaches as discovery engines in antibacterial research, both as powerful tools and to stimulate innovation.


Subject(s)
Anti-Bacterial Agents/chemistry , Computational Biology/methods , Drug Discovery , Anti-Bacterial Agents/pharmacology , Bacteria/genetics , Drug Resistance, Bacterial/drug effects , Genomics , Machine Learning
8.
Article in English | MEDLINE | ID: mdl-33468483

ABSTRACT

Discovering new Gram-negative antibiotics has been a challenge for decades. This has been largely attributed to a limited understanding of the molecular descriptors governing Gram-negative permeation and efflux evasion. Herein, we address the contribution of efflux using a novel approach that applies multivariate analysis, machine learning, and structure-based clustering to some 4,500 molecules (actives) from a small-molecule screen in efflux-compromised Escherichia coli We employed principal-component analysis and trained two decision tree-based machine learning models to investigate descriptors contributing to the antibacterial activity and efflux susceptibility of these actives. This approach revealed that the Gram-negative activity of hydrophobic and planar small molecules with low molecular stability is limited to efflux-compromised E. coli Furthermore, molecules with reduced branching and compactness showed increased susceptibility to efflux. Given these distinct properties that govern efflux, we developed the first efflux susceptibility machine learning model, called Susceptibility to Efflux Random Forest (SERF), as a tool to analyze the molecular descriptors of small molecules and predict those that could be susceptible to efflux pumps in silico Here, SERF demonstrated high accuracy in identifying such molecules. Furthermore, we clustered all 4,500 actives based on their core structures and identified distinct clusters highlighting side-chain moieties that cause marked changes in efflux susceptibility. In all, our work reveals a role for physicochemical and structural parameters in governing efflux, presents a machine learning tool for rapid in silico analysis of efflux susceptibility, and provides a proof of principle for the potential of exploiting side-chain modification to design novel antimicrobials evading efflux pumps.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/pharmacology , Biological Transport , Escherichia coli/genetics
9.
ACS Infect Dis ; 6(10): 2709-2718, 2020 10 09.
Article in English | MEDLINE | ID: mdl-32898415

ABSTRACT

The growing challenge of microbial resistance emphasizes the importance of new antibiotics or reviving strategies for the use of old ones. Macrolide antibiotics are potent bacterial protein synthesis inhibitors with a formidable capacity to treat life-threatening bacterial infections; however, acquired and intrinsic resistance limits their clinical application. In the work presented here, we reveal that bicarbonate is a potent enhancer of the activity of macrolide antibiotics that overcomes both acquired and intrinsic resistance mechanisms. With a focus on azithromycin, a highly prescribed macrolide antibiotic, and using clinically relevant pathogens, we show that physiological concentrations of bicarbonate overcome drug resistance by increasing the intracellular concentration of azithromycin. We demonstrate the potential of bicarbonate as a formulation additive for topical use of azithromycin in treating a murine wound infection caused by Pseudomonas aeruginosa. Further, using a systemic murine model of methicillin-resistant Staphylococcus aureus (MRSA) infection, we demonstrate the potential role of physiological bicarbonate, naturally abundant in the host, to enhance the activity of azithromycin against macrolide-resistant MRSA. In all, our findings suggest that macrolide resistance, observed in the clinical microbiology laboratory using standard culturing techniques, is a poor predictor of efficacy in the clinic and that observed resistance should not necessarily hamper the use of macrolides. Whether as a formulation additive for topical use or as a natural component of host tissues, bicarbonate is a powerful potentiator of macrolides with the capacity to overcome drug resistance in life-threatening bacterial infections.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Animals , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bicarbonates , Drug Resistance, Bacterial , Macrolides/pharmacology , Mice
10.
ACS Infect Dis ; 6(3): 338-346, 2020 03 13.
Article in English | MEDLINE | ID: mdl-32017534

ABSTRACT

The spread of antimicrobial resistance continues to be a priority health concern worldwide, necessitating the exploration of alternative therapies. Cannabis sativa has long been known to contain antibacterial cannabinoids, but their potential to address antibiotic resistance has only been superficially investigated. Here, we show that cannabinoids exhibit antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA), inhibit its ability to form biofilms, and eradicate preformed biofilms and stationary phase cells persistent to antibiotics. We show that the mechanism of action of cannabigerol is through targeting the cytoplasmic membrane of Gram-positive bacteria and demonstrate in vivo efficacy of cannabigerol in a murine systemic infection model caused by MRSA. We also show that cannabinoids are effective against Gram-negative organisms whose outer membrane is permeabilized, where cannabigerol acts on the inner membrane. Finally, we demonstrate that cannabinoids work in combination with polymyxin B against multidrug resistant Gram-negative pathogens, revealing the broad-spectrum therapeutic potential for cannabinoids.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Cannabinoids/pharmacology , Cannabis/chemistry , Methicillin-Resistant Staphylococcus aureus/drug effects , Animals , Anti-Bacterial Agents/chemistry , Cell Membrane/drug effects , Female , Gram-Negative Bacteria/drug effects , Mice , Microbial Sensitivity Tests , Polymyxin B/pharmacology , Staphylococcal Infections/blood , Staphylococcal Infections/drug therapy
11.
Nat Microbiol ; 4(4): 565-577, 2019 04.
Article in English | MEDLINE | ID: mdl-30833727

ABSTRACT

Antimicrobial resistance continues to be a public threat on a global scale. The ongoing need to develop new antimicrobial drugs that are effective against multi-drug-resistant pathogens has spurred the research community to invest in various drug discovery strategies, one of which is drug repurposing-the process of finding new uses for existing drugs. While still nascent in the antimicrobial field, the approach is gaining traction in both the public and private sector. While the approach has particular promise in fast-tracking compounds into clinical studies, it nevertheless has substantial obstacles to success. This Review covers the art of repurposing existing drugs for antimicrobial purposes. We discuss enabling screening platforms for antimicrobial discovery and present encouraging findings of novel antimicrobial therapeutic strategies. Also covered are general advantages of repurposing over de novo drug development and challenges of the strategy, including scientific, intellectual property and regulatory issues.


Subject(s)
Anti-Infective Agents/pharmacology , Drug Discovery/trends , Drug Repositioning/trends , Animals , Anti-Infective Agents/chemistry , Humans
12.
J Antimicrob Chemother ; 73(5): 1247-1255, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29420743

ABSTRACT

Objectives: To assess the ability of meropenem to potentiate aminoglycoside (AG) activity against laboratory and AG-resistant cystic fibrosis (CF) isolates of Pseudomonas aeruginosa and to elucidate its mechanism of action. Methods: AG resistance gene deletions were engineered into P. aeruginosa laboratory and CF isolates using standard gene replacement technology. Susceptibility to AGs ± meropenem (at ½ MIC) was assessed using a serial 2-fold dilution assay. mexXY expression and MexXY-OprM efflux activity were quantified using quantitative PCR and an ethidium bromide accumulation assay, respectively. Results: A screen for agents that rendered WT P. aeruginosa susceptible to a sub-MIC concentration of the AG paromomycin identified the carbapenem meropenem, which potentiated several additional AGs. Meropenem potentiation of AG activity was largely lost in a mutant lacking the MexXY-OprM multidrug efflux system, an indication that it was targeting this efflux system in enhancing P. aeruginosa susceptibility to AGs. Meropenem failed to block AG induction of mexXY expression or MexXY-OprM efflux activity, suggesting that it may be interfering with some MexXY-dependent process linked to AG susceptibility. Meropenem potentiated AG activity versus AG-resistant CF isolates, enhancing susceptibility to at least one AG in all isolates and susceptibility to all tested AGs in 50% of the isolates. Notably, meropenem potentiation of AG activity was linked to MexXY in some but not all CF isolates in which this was examined. Conclusions: Meropenem potentiates AG activity against laboratory and CF strains of P. aeruginosa, both dependent on and independent of MexXY, highlighting the complexity of AG resistance in this organism.


Subject(s)
Aminoglycosides/pharmacology , Anti-Bacterial Agents/pharmacology , Bacterial Outer Membrane Proteins/metabolism , Bacterial Proteins/metabolism , Drug Synergism , Membrane Transport Proteins/metabolism , Meropenem/pharmacology , Pseudomonas aeruginosa/drug effects , Bacterial Outer Membrane Proteins/genetics , Bacterial Proteins/genetics , Gene Expression Profiling , Membrane Transport Proteins/genetics , Microbial Sensitivity Tests , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/metabolism , Real-Time Polymerase Chain Reaction
13.
ACS Infect Dis ; 4(3): 382-390, 2018 03 09.
Article in English | MEDLINE | ID: mdl-29264917

ABSTRACT

The antibacterial properties of sodium bicarbonate have been known for years, yet the molecular understanding of its mechanism of action is still lacking. Utilizing chemical-chemical combinations, we first explored the effect of bicarbonate on the activity of conventional antibiotics to infer on the mechanism. Remarkably, the activity of 8 classes of antibiotics differed in the presence of this ubiquitous buffer. These interactions and a study of mechanism of action revealed that, at physiological concentrations, bicarbonate is a selective dissipater of the pH gradient of the proton motive force across the cytoplasmic membrane of both Gram-negative and Gram-positive bacteria. Further, while components that make up innate immunity have been extensively studied, a link to bicarbonate, the dominant buffer in the extracellular fluid, has never been made. Here, we also explored the effects of bicarbonate on components of innate immunity. Although the immune response and the buffering system have distinct functions in the body, we posit there is interplay between these, as the antimicrobial properties of several components of innate immunity were enhanced by a physiological concentration of bicarbonate. Our findings implicate bicarbonate as an overlooked potentiator of host immunity in the defense against pathogens. Overall, the unique mechanism of action of bicarbonate has far-reaching and predictable effects on the activity of innate immune components and antibiotics. We conclude that bicarbonate has remarkable power as an antibiotic adjuvant and suggest that there is great potential to exploit this activity in the discovery and development of new antibacterial drugs by leveraging testing paradigms that better reflect the physiological concentration of bicarbonate.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bicarbonates/metabolism , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Proton-Motive Force/drug effects , Drug Synergism
14.
Nat Microbiol ; 2: 17028, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28263303

ABSTRACT

The increasing use of polymyxins1 in addition to the dissemination of plasmid-borne colistin resistance threatens to cause a serious breach in our last line of defence against multidrug-resistant Gram-negative pathogens, and heralds the emergence of truly pan-resistant infections. Colistin resistance often arises through covalent modification of lipid A with cationic residues such as phosphoethanolamine-as is mediated by Mcr-1 (ref. 2)-which reduce the affinity of polymyxins for lipopolysaccharide3. Thus, new strategies are needed to address the rapidly diminishing number of treatment options for Gram-negative infections4. The difficulty in eradicating Gram-negative bacteria is largely due to their highly impermeable outer membrane, which serves as a barrier to many otherwise effective antibiotics5. Here, we describe an unconventional screening platform designed to enrich for non-lethal, outer-membrane-active compounds with potential as adjuvants for conventional antibiotics. This approach identified the antiprotozoal drug pentamidine6 as an effective perturbant of the Gram-negative outer membrane through its interaction with lipopolysaccharide. Pentamidine displayed synergy with antibiotics typically restricted to Gram-positive bacteria, yielding effective drug combinations with activity against a wide range of Gram-negative pathogens in vitro, and against systemic Acinetobacter baumannii infections in mice. Notably, the adjuvant activity of pentamidine persisted in polymyxin-resistant bacteria in vitro and in vivo. Overall, pentamidine and its structural analogues represent unexploited molecules for the treatment of Gram-negative infections, particularly those having acquired polymyxin resistance determinants.


Subject(s)
Anti-Bacterial Agents/metabolism , Colistin/metabolism , Drug Resistance, Bacterial , Drug Synergism , Gram-Negative Bacteria/drug effects , Pentamidine/metabolism , Acinetobacter Infections/microbiology , Acinetobacter baumannii/drug effects , Animals , Disease Models, Animal , Drug Evaluation, Preclinical/methods
15.
Antimicrob Agents Chemother ; 60(6): 3509-18, 2016 06.
Article in English | MEDLINE | ID: mdl-27021319

ABSTRACT

A screen for agents that potentiated the activity of paromomycin (PAR), a 4,5-linked aminoglycoside (AG), against wild-type Pseudomonas aeruginosa identified the RNA polymerase inhibitor rifampin (RIF). RIF potentiated additional 4,5-linked AGs, such as neomycin and ribostamycin, but not the clinically important 4,6-linked AGs amikacin and gentamicin. Potentiation was absent in a mutant lacking the AmgRS envelope stress response two-component system (TCS), which protects the organism from AG-generated membrane-damaging aberrant polypeptides and, thus, promotes AG resistance, an indication that RIF was acting via this TCS in potentiating 4,5-linked AG activity. Potentiation was also absent in a RIF-resistant RNA polymerase mutant, consistent with its potentiation of AG activity being dependent on RNA polymerase perturbation. PAR-inducible expression of the AmgRS-dependent genes htpX and yccA was reduced by RIF, suggesting that AG activation of this TCS was compromised by this agent. Still, RIF did not compromise the membrane-protective activity of AmgRS, an indication that it impacted some other function of this TCS. RIF potentiated the activities of 4,5-linked AGs against several AG-resistant clinical isolates, in two cases also potentiating the activity of the 4,6-linked AGs. These cases were, in one instance, explained by an observed AmgRS-dependent expression of the MexXY multidrug efflux system, which accommodates a range of AGs, with RIF targeting of AmgRS undermining mexXY expression and its promotion of resistance to 4,5- and 4,6-linked AGs. Given this link between AmgRS, MexXY expression, and pan-AG resistance in P. aeruginosa, RIF might be a useful adjuvant in the AG treatment of P. aeruginosa infections.


Subject(s)
Anti-Bacterial Agents/pharmacology , Paromomycin/pharmacology , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/drug effects , Rifampin/pharmacology , Amikacin/pharmacology , Bacterial Proteins/biosynthesis , Bacterial Proteins/genetics , Drug Resistance, Multiple, Bacterial/genetics , Drug Synergism , Gene Expression Regulation, Bacterial , Gentamicins/pharmacology , Heat-Shock Proteins/biosynthesis , Heat-Shock Proteins/genetics , Humans , Membrane Proteins/biosynthesis , Membrane Proteins/genetics , Microbial Sensitivity Tests , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Pseudomonas aeruginosa/isolation & purification , Ribostamycin/pharmacology , Stress, Physiological/genetics
16.
Nat Prod Rep ; 33(5): 668-80, 2016 05 04.
Article in English | MEDLINE | ID: mdl-26806527

ABSTRACT

Covering: 2000 to 2015Despite a pervasive decline in natural product research at many pharmaceutical companies over the last two decades, natural products have undeniably been a prolific and unsurpassed source for new lead antibacterial compounds. Due to their inherent complexity, natural extracts face several hurdles in high-throughout discovery programs, including target identification. Target identification and validation is a crucial process for advancing hits through the discovery pipeline, but has remained a major bottleneck. In the case of natural products, extremely low yields and limited compound supply further impede the process. Here, we review the wealth of target identification strategies that have been proposed and implemented for the characterization of novel antibacterials. Traditionally, these have included genomic and biochemical-based approaches, which, in recent years, have been improved with modern-day technology and better honed for natural product discovery. Further, we discuss the more recent innovative approaches for uncovering the target of new antibacterial natural products, which have resulted from modern advances in chemical biology tools. Finally, we present unique screening platforms implemented to streamline the process of target identification. The different innovative methods to respond to the challenge of characterizing the mode of action for antibacterial natural products have cumulatively built useful frameworks that may advocate a renovated interest in natural product drug discovery programs.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biological Products/pharmacology , Drug Discovery , Anti-Bacterial Agents/chemistry , Biological Products/chemistry , Genomics , Molecular Structure
17.
Proc Natl Acad Sci U S A ; 112(35): 11048-53, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26283394

ABSTRACT

Drug combinations are valuable tools for studying biological systems. Although much attention has been given to synergistic interactions in revealing connections between cellular processes, antagonistic interactions can also have tremendous value in elucidating genetic networks and mechanisms of drug action. Here, we exploit the power of antagonism in a high-throughput screen for molecules that suppress the activity of targocil, an inhibitor of the wall teichoic acid (WTA) flippase in Staphylococcus aureus. Well-characterized antagonism within the WTA biosynthetic pathway indicated that early steps would be sensitive to this screen; however, broader interactions with cell wall biogenesis components suggested that it might capture additional targets. A chemical screening effort using this approach identified clomiphene, a widely used fertility drug, as one such compound. Mechanistic characterization revealed the target was the undecaprenyl diphosphate synthase, an enzyme that catalyzes the synthesis of a polyisoprenoid essential for both peptidoglycan and WTA synthesis. The work sheds light on mechanisms contributing to the observed suppressive interactions of clomiphene and in turn reveals aspects of the biology that underlie cell wall synthesis in S. aureus. Further, this effort highlights the utility of antagonistic interactions both in high-throughput screening and in compound mode of action studies. Importantly, clomiphene represents a lead for antibacterial drug discovery.


Subject(s)
Alkyl and Aryl Transferases/antagonists & inhibitors , Cell Wall/drug effects , Enzyme Inhibitors/pharmacology , Staphylococcus aureus/drug effects , Anti-Bacterial Agents/pharmacology , Clomiphene/pharmacology , Microbial Sensitivity Tests , Staphylococcus aureus/metabolism
18.
Ann N Y Acad Sci ; 1354: 54-66, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26100135

ABSTRACT

The dramatic rise in microbial drug resistance in recent years has led to ongoing searches for novel drugs to add to the armory against infectious disease. Nevertheless, a paucity of new antibacterial drugs in discovery and development pipelines using traditional approaches has prompted a variety of unconventional and disruptive strategies for antibacterial drug discovery. Herein, we review recent nontraditional approaches that have been piloted for early drug discovery efforts. These unique methodologies open new avenues for finding the next generation of antimicrobials.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , Drug Discovery/methods , Drug Resistance, Microbial/drug effects , Animals , Bacteria/classification , Bacterial Infections/microbiology , Bacterial Infections/prevention & control , Disease Models, Animal , Drug Discovery/trends , Humans , Microbial Sensitivity Tests/methods , Microbial Sensitivity Tests/trends
19.
Bioorg Med Chem Lett ; 24(3): 905-10, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24393581

ABSTRACT

The thienopyridine antiplatelet agent, ticlopidine and its analog, clopidogrel, have been shown to potentiate the action of ß-lactam antibiotics, reversing the methicillin-resistance phenotype of methicillin-resistant Staphylococcus aureus (MRSA), in vitro. Interestingly, these thienopyridines inhibit the action of TarO, the first enzyme in the synthesis of wall teichoic acid, an important cell wall polymer in Gram-positive bacteria. In the human body, both ticlopidine and clopidogrel undergo a rapid P450-dependent oxidation into their respective antiplatelet-active metabolites, resulting in very low plasma concentrations of intact drug. Herein, a series of analogs of ticlopidine and clopidogrel that would avoid oxidative metabolism were designed, prepared and evaluated as inhibitors of TarO. Specifically, we replaced the P450-labile thiophene ring of ticlopidine and clopidogrel to a more stable phenyl group to generate 2-(2-chlorobenzyl)-1,2,3,4-tetrahydro-isoquinoline) (6) and (2-chloro-phenyl)-(3,4-dihydro-1H-isoquinolin-2-yl)-acetic acid methyl ester (22), respectively. The latter molecules displayed inhibitory activity against TarO and formed the basis of a library of analogs. Most synthesized compounds exhibited comparable efficacy to ticlopidine and clopidogrel. So far, it was introduction of a trifluoromethyl group to compound 6, to generate 2-(2-trifluoromethyl-benzyl)-1,2,3,4-tetrahydro-isoquinoline (13) that exhibited enhanced activity against TarO. Compound 13 represents a novel stable inhibitor of TarO with synergistic impact on ß-lactam antibiotics against MRSA and low potential for P-450 metabolism.


Subject(s)
Drug Design , Teichoic Acids/antagonists & inhibitors , Ticlopidine/analogs & derivatives , Ticlopidine/chemistry , Clopidogrel , Inhibitory Concentration 50 , Methicillin-Resistant Staphylococcus aureus/drug effects , Molecular Structure , Oxidation-Reduction/drug effects , Teichoic Acids/chemistry , Ticlopidine/pharmacology
20.
Chem Biol ; 20(9): 1168-78, 2013 Sep 19.
Article in English | MEDLINE | ID: mdl-23972939

ABSTRACT

Pathways of bacterial energy metabolism, such as the proton motive force (PMF), have largely remained unexplored as drug targets, owing to toxicity concerns. Here, we elaborate on a methodical and systematic approach for targeting the PMF using chemical combinations. We began with a high-throughput screen to identify molecules that selectively dissipate either component of the PMF, ΔΨ or ΔpH, in Staphylococcus aureus. We uncovered six perturbants of PMF, three that countered ΔΨ and three that selectively dissipated ΔpH. Combinations of dissipators of ΔΨ with dissipators of ΔpH were highly synergistic against methicillin-resistant S. aureus. Cytotoxicity analyses on mammalian cells revealed that the dose-sparing effect of the observed synergies could significantly reduce toxicity. The discovery and combination of modulators of ΔΨ and ΔpH may represent a promising strategy for combating microbial pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Proton-Motive Force/drug effects , Staphylococcus aureus/metabolism , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/toxicity , Cell Survival/drug effects , Drug Synergism , Energy Metabolism , HeLa Cells , High-Throughput Screening Assays , Humans , Hydrogen-Ion Concentration , Microbial Sensitivity Tests
SELECTION OF CITATIONS
SEARCH DETAIL
...